1911.06833v1 [cs.LG] 15 Nov 2019

arxXiv

Improved Exploration through Latent Trajectory Optimization in Deep
Deterministic Policy Gradient

Kevin Sebastian Luck!, Mel Vecerik?, Simon Stepputtis', Heni Ben Amor! and Jonathan Scholz?

Abstract— Model-free reinforcement learning algorithms
such as Deep Deterministic Policy Gradient (DDPG) often
require additional exploration strategies, especially if the actor
is of deterministic nature. This work evaluates the use of model-
based trajectory optimization methods used for exploration
in Deep Deterministic Policy Gradient when trained on a
latent image embedding. In addition, an extension of DDPG
is derived using a value function as critic, making use of a
learned deep dynamics model to compute the policy gradient.
This approach leads to a symbiotic relationship between the
deep reinforcement learning algorithm and the latent trajectory
optimizer. The trajectory optimizer benefits from the critic
learned by the RL algorithm and the latter from the enhanced
exploration generated by the planner. The developed methods
are evaluated on two continuous control tasks, one in simulation
and one in the real world. In particular, a Baxter robot is
trained to perform an insertion task, while only receiving sparse
rewards and images as observations from the environment.

I. INTRODUCTION

Reinforcement learning (RL) methods enabled the devel-
opment of autonomous systems that can autonomously learn
and master a task when provided with an objective function.
RL has been successfully applied to a wide range of tasks
including flying [24], [17], manipulation [26], [9], [12], [3],
[1], locomotion [10], [13], and even autonomous driving [6],
[7]. The vast majority of RL algorithms can be classified
into the two categories of (a) inherently stochastic or (b)
deterministic methods. While inherently stochastic methods
have their exploration typically built-in [4], [18], their de-
terministic counterparts require an, often independent, ex-
ploration strategy for the acquisition of new experiences
within the task domain [11], [8]. In deep reinforcement
learning, simple exploration strategies such as Gaussian noise
or Ornstein-Uhlenbeck (OU) processes [25], which model
Brownian motion, are standard practice and have been found
to be effective [11]. However, research has shown that
advanced exploration strategies can lead to a higher sample-
efficiency and performance of the underlying RL algorithm
[14]. In practice, there are two ways to incorporate advanced
exploration strategies into deterministic policy search meth-
ods. Where possible, one can reformulate the deterministic
approach within a stochastic framework, such as by modeling
the actions to be sampled as a distribution. Parameters of the
distribution can then be trained and are tightly interconnected
with the learning framework. One example for this method-
ology, is the transformation of Policy Search with Weighted

Interactive Robotics Lab, Arizona State University, Tempe, AZ, USA
{ksluck, sstepput, hbenamor} &t asu.edu

2Google DeepMind, London, UK.
{vec, jscholz} &t google.com

Fig. 1: A Baxter robot learning a visuo-motor policy for an
insertion task using efficient exploration in latent spaces. The
peg is suspended from a string.

Returns (POWER) [8] into Policy Search with Probabilistic
Principal Component Exploration (PePPEr) [14]. Instead of
using a fixed Gaussian distribution for exploration, the noise
generating process in PePPEr is based on Probabilistic Prin-
cipal Component Analysis (PPCA) and generates samples
along the latent space of high-reward actions. Generating
explorative noise from PPCA and sampling along the latent
space was shown to outperform the previously fixed Gaussian
exploration. Alternatively, one can choose to optimize the
exploration strategy itself. Examples of this methodology are
count-based exploration strategies [22], novelty search [21]
or curiosity-driven approaches [16] which can be transferred
with ease to other algorithms or frameworks. Typically, when
incorporating these techniques into reinforcement learning,
they are limited to local exploration cues based on the
current state. This paper aims to combine the model-free
deep deterministic policy gradient method with a model-
based exploration technique for increased sample-efficiency
in real world task domains. The proposed method generates
exploratory noise by optimizing a (latent) trajectory from the
current state to ideal future states, based on value functions
learned by an RL algorithm. This experience is, in turn, used
by the RL algorithm to optimize policy and value functions
in an off-policy fashion, providing an improved objective
function for the trajectory optimizer. We investigate whether
this strategy of formulating exploration as a latent trajectory
optimization problem leads to an improved learning process
both in simulation, as well as in a robotic insertion task
executed solely in the real world. In particular, we apply our
approach to a challenging, flexible insertion task as seen in

Fig. [1]

(b) Insertion started

(a) Rand. initial position

Fig. 2: The experimental setup in which a Baxter robot has
to insert a blue cylinder into a white tube (b). The cylinder is
with a string attached to the end-effector of the robot. Camera
images are recorded with the integrated end-effector camera.
The sensor detecting the state of insertion is integrated into
the white tube. Experiments on this platform were run fully
autonomously without human intervention or simulations.

II. RELATED WORK

The advancement of deep reinforcement learning in recent
years has lead to the development of a number of methods
combining model-free and model-based learning techniques,
in particular to improve the sample complexity of deep re-
inforcement learning methods. Nagabandi et al. [15] present
a model-based deep reinforcement learning approach which
learns a deep dynamic function mapping a state and action
pair (s, a;) to the next state s;+1. The dynamics function is
used to unroll a trajectory and to create an objective function
based on the cumulative reward along the trajectory. This
objective function is, then, used to optimize the actions along
the trajectory and thereafter the first action is executed. The
procedure is repeated whenever the next state is reached.
After a dataset of executed trajectories is collected by the
planning process, the policy of a model-free reinforcement
learning algorithm is initialized in a supervised fashion by
training it to match the actions produced by the planner.
This technique is different to our approach in that we do
not force the actor to match the executed action, but rather
see it as an exploration from which we generate off-policy
updates. Furthermore, it is implicitly assumed in [15] that
a reward function is available for each state during the
planning process. This can be a rather strong assumption,
especially when learning in the real world without access to
a simulation of the task and only providing minimal human
supervision. Using executions in the environment during the
planning process would be too costly since each change in
state would require a re-execution of the whole trajectory.
Since our insertion task provides only sparse rewards during
execution, the trajectory planning algorithm would fail when
relying only on rewards due to flat regions with zero reward
and require additional reward engineering. This leaves a large

and mostly flat region in the state space with a reward of
ZEero.

In [2], Chua et al. introduce the model-based probabilistic
ensembles with trajectory sampling method. This work builds
upon [15], but also makes use of a reward function. It makes
use of a probabilistic formulation of the deep dynamics func-
tion by using an ensemble of bootstrapped models encoding
distributions to improve the sample complexity and improves
the properties of the trajectory planner. Both approaches do
not explicitly train an actor or a critic network.

Similarly to us, Universal planning networks [20] intro-
duced by Srinivas et al. use a latent, gradient-based trajectory
optimization method. However, the planner requires a goal
state for the trajectory optimization. In certain tasks such as
walking or running, it might be hard to acquire such a goal
state to use in place of a velocity-based reward function. It is
mentioned in [20] that to achieve walking, it was necessary
to re-render images or reformulate the objective function by
including an accessible dense reward function.

In contrast to previous work, we focus explicitly on the
impact of using trajectory optimization as an additional tech-
nique for exploration and its impact on the learning process
when used by a deep reinforcement learning algorithm such
as Deep Deterministic Policy Gradient. Furthermore, using
an actor-critic architecture is a key element in our work to
allow off-policy updates in a fast manner during the training
process and to inform the trajectory optimization process
initially.

III. METHOD

The following sections introduce the different compo-
nents used to generate explorative actions via trajectory
optimization. We first describe the image embedding used,
then the training process of the dynamics function and
Deep Deterministic Policy Gradient (DDPG) [11], as well
as its extension for the use of a value function. The section
ends with a description of our trajectory optimization based
exploration for DDPG.

A. Image Embedding

All tasks used throughout this paper are setup such that
they use only images as observations, which have to be
projected into a latent image embedding. This serves two
main purposes: First, the number of parameters is greatly
reduced since the actor, critic, and the dynamics network
can be trained directly in the low dimensional latent space.
Second, it is desirable to enforce temporal constraints within
the latent image embedding, namely that subsequent images
are close to each other after being projected into the latent
space. Therefore, we make use of the recently introduced
approach of time-contrastive networks [19]: the loss function
enforces that the distance between latent representations of
two subsequent images are small but the distance between
two randomly chosen images is above a chosen threshold «.
Enforcing a temporal constraint in the latent space improves
the learning process of a consistent deep dynamics function
in the latent space [19]. Time-contrastive networks make use

of two losses. The first is defined on the output of the decoder
network and the input image as found in most autoencoder
implementations. The second loss, the triplet loss, takes the
latent representation z; and z;;; of two temporally close
images and the latent representation z, of a randomly chosen
image.

Thus, given two temporal images Im; and Imyy; and a
randomly chosen image Im,, the loss functions for each
element in the batch is given by

L(Imt, Imt+1, Imr) = Lae (Imt) + Lcomr(lmt, Imt+1 y Imr)
(D
The classical autoencoder loss L,. and the contrastive loss
Leony are here defined as

Ly =[| Im; — D(E(Imy)) ||,
Leone (Img, Imy 1, Tm,.) =|| E(Im;) — E(Tmgyq) || 2
+ max(a— || E(Im) — E(Im,.) ||, 0),

with E' being the encoder and D being the decoder network.
The scalar value « defines the desired minimum distance
between two random images in the latent embedding. Thus
the classic autoencoder loss L, trains both the encoder and
decoder network to learn a reconstructable image embedding.
The contrastive loss Lcony, on the other hand, generates
only a learning signal for the encoder network and places
a temporal constraint on the image embedding. The encoder
and decoder consist of three convolutional networks with a
kernel shape of (3,3) and a stride of (2,2), followed by
a linear layer of size 20 and an 12-normalized embedding
which projects the states on a unit sphere [19]. All activation
functions are rectified linear units (ReLU).

B. Latent Dynamics

Using a trajectory optimization algorithm in latent space
requires a dynamics function which maps a latent state z, and
an action ay to a subsequent latent state z; 1. This allows us
to unroll trajectories into the future. In the case of a single
image with z; = F(Im;), we learn a dynamics mapping of
U(z¢,a:) = 7441 In the other case, when our latent state is
derived from several stacked images, then we project each
image into the latent space, for example by

E(Imtfg) Ziiz
Em_1)| = |27t =z 3)
E(Imy) z!

To predict the next latent state, the dynamics function simply
has to rotate the state and only predict the third latent sub-
state. This function can be described with

zi_z zi_l
7= |z — - z! = Zi41, 4)
z! U(z,a:)

where W is the output of the neural network while we will
use the notation V(z;,a;) = Z;41 for the whole operation,
and z;1 is the predicted next latent state. The loss function
for the dynamics network is then simply the difference

Q(z, a;)
(a) Q-Value based actor update

V(Z¢41)
(b) Value based actor update

Fig. 3: The original DDPG algorithm (a) can be reformulated
such that a value function (b) is used. In the case of a value
function the policy gradient (red arrow) is computed via a
neural dynamics function.

between the predicted latent state and the actual latent state.
Therefore, the loss is given as

W (2, a) = E(Imgg) [l
)

for each state-action-state triple (Im;_s.+, a¢, Im;_1.411) ob-
served during execution. The dynamics networks is con-
structed out of 3 fully connected layers of size 400, 400
and 20 with ReLUs as nonlinear activation functions.

Layn(Imy_2.4, a4, Imy 1) =

C. Deep Reinforcement Learning

We make use of the Deep Deterministic Policy Gradient
(DDPG) algorithm since action and state/latent space are
continuous. DDPG is based on the actor-critic model which
is characterized by the idea to generate a training signal for
the actor (network) from the critic (network). In turn, the
critic utilizes the actor to achieve an off-policy update and
models usually a Q-value function. In DDPG, the actor is a
network mapping (latent) states to an action with the goal
of choosing optimal actions under a reward function. Hence,
the loss function for the actor is given by

Lactor(zt) = _Q(Zt77r(zt))7 (6)

where only the parameters of the actor 7(z;) are optimized
(see Eq. 6 in [11]). In the case of classical DDPG, the critic
is a Q-function network, which maps state and action pairs
to a Q-value: Q(zy,a;) = 7(2zs,ar) + YQ(2Ze+41, T(2Ze41))-
The scalar gamma is a discount factor and r(z¢,a;) is the
reward. The loss function of the critic network is based on
the Bellman equation:

Levitic(2¢, @t i1, 2e41) = || Q(z¢, a¢)—

(re41 +7Q (2e41, 7' (2e41))) |,
(7

where Q' and 7’ are target networks. For more details on
DDPG we refer the interested reader to [11]. It is worth
noting that DDPG can be reformulated such that the critic
resembles a value function instead of a Q-value function (Fig.

Qri2

Trajectory Optimizer

J

Fig. 4: The proposed exploration strategy unrolls the tra-
jectory in the latent space and uses the Value/Q-Value to
optimize the actions of the trajectory. Dotted connections
might not be used when using a Value function as critic.

[see also [5]). A naive reformulation of the loss function
given above is

Leritic (¢, a¢, 14, 2e41) = || V(z¢) — (reg1 + 7V (2e41)) |,
®)

given an experience (z¢,at, r'¢11,%¢+1). But this reformula-
tion updates only on-policy and lacks the off-policy update
ability of classical DDPG. Even worse, we would fail to use
such a critic to update the actor since no action gradient
can be computed due to the sole dependency on the state.
However, since we have access to a dynamics function we
reformulate for our extension of DDPG the loss function and
incorporate off-policy updates with

Lcritic(zt; ag, I't, zt+1) = || V(zt)

= (re + YV (U (ze, 7' (20))) | -
(€))

This formulation allows for off-policy updates given the
experience (2, a, '+, Zt+1), for which we assume that the
reward r(z) is only state-dependent. While this might appear
to be a strong assumption at first, it holds true for most tasks
in robotics. The insertion task presented in the remainder
of this paper is such a case in which the reward is fully
described by the current position of both end-effector and
the object to be inserted.
The loss function for the actor is then given with

Laclor(zt> = —V(\IJ(Zt,TF(Zt))), (10

which is fully differentiable and, again, only used to optimize
the parameters of the actor network. We use for both actor
and critic two fully connected hidden layers of size 400 and
300 with ReLUs as nonlinear activation functions.

D. Optimized Exploration

Due to the deterministic nature of the actor network in
DDPG and similar algorithms, the standard approach for
exploration is to add random noise to actions. Random noise
is usually generated from an Ornstein-Uhlenbeck process
or a Gaussian distribution with fixed parameters. Such pa-
rameters, like the variance for a Gaussian distribution, are

usually chosen by intuition or have to be optimized as hyper-
parameter, for example with grid-search. In preliminary
experiments we found Ornstein-Uhlenbeck processes with
o = 0.5 and § = 0.15 most effective on the chosen
simulated task. In the presented approach we make use of
the fact that we can access a dynamics function and therefore
unroll trajectories throughout the latent space. The basic
idea is to first unroll a trajectory using the actor network
a number of steps into the future from the current point
in time. We then optimize the actions a;,--: ,a;y, such
that we maximize the Q-values/rewards along the latent
trajectory. We characterize a latent trajectory, given a start
state z; = F(Im¢), as a sequence of state-action pairs
(zt,8¢, -, ZerH, B4 1, Zt4-H+1)- We can then formulate a
scalar function to be maximized by the trajectory optimizer
based on the Q-value or reward-functions available. This pro-
cess is visualized in Fig. [d] The Q-function in the following
equations can be substituted with a learned value function.
An intuitive objective function to optimize is to simply sum
up all Q-values for each state-action pair of the trajectory

H
folapirm, ze) = woQ(ze, ar) + Z W;Q(Ze45, Att5),

j=1
1D

with z,4; = ¥(244,_1,a,4,-1) and z, being the current
state from which we start unrolling the trajectory. The time-
dependent weight w; determines how much actions are going
to be impacted by future states and their values and can be
uniform, linearly increasing or exponential. We consider in
our experiments the special case of w; = % Alternatively,
if one has access to a rewards function or learns a state-to-
reward mapping simultaneously, then an objective function
can be used which accumulates all rewards along the latent
trajectory and adds only the final g-value:
H-1
friq@uerm,ze) = Y wir(zes;) + waQ(Ber A).
j=1

(12)
Clearly, this objective function is especially useful in the
context of tasks with dense rewards. Both objective functions
will be evaluated on the simulated cheetah task, which
provides such dense rewards. While executing policies in the
real world, we unroll a planning trajectory from the current
state for n steps into the future. Then, the actions a;.;, ;y are
optimized under one of the introduced objectives from above
with a gradient-based optimization method such as L-BFGS
[27]. After a number of iterations of trajectory optimization,
here 20, the first action of the trajectory, namely a;, is
executed in the real world (Alg. [I).

IV. EXPERIMENTS

We compare in our experiments the classical approach of
exploration in DDPG with an optimized Ornstein-Uhlenbeck
process against the introduced approach of exploration
through optimization. First, an experiment in simulation was
conducted using the DeepMind Control Suite [23]. The

Algorithm 1 Exploration through trajectory optimization in
DDPG
Require: Horizon H, Encoder network
for number of episodes do
while end of episode not reached do
Compute latent state z; from images with encoder
Initialize action with a; = 7(z;)
if training then
for k=t+1:t+ H do
Initialize action with a; = 7(zg)
Predict latent state z;1 = U(zy, ay)
end for
Optimize maxa,,, , f(Qui+H,2¢)
end if
Execute step in environment with action a;
Store (z¢, ay, 4, Z¢11) in replay buffer
end while
Optimize dynamics network
Optimize actor network
Optimize critic network
Update target networks
end for

cheetah task, in which a two-dimensional bipedal agent has
to learn to walk, is especially interesting because it involves
contacts with the environment that makes the dynamics
hard to model. In the second experiment, we evaluate the
algorithms directly on a robot and aim to solve an insertion
task in the real world.

A. Evaluation in Simulation on the Cheetah Task

The cheetah environment of the DeepMind control suite
[23] has six degrees-of-freedom in its joints and we only use
camera images as state information. The actions are limited
to the range of [—1,1] and camera images are of the size
320 x 240 pz in RGB and were resized to 64 x 64 pz. Each
episode consists of 420 time steps and actions are repeated
two times per time step. First, a dataset of 50 representative
episodes was collected through the use of DDPG on the
original state space of joint positions, joint velocities, relative
body pose and body velocity of cheetah. This dataset was
used to train the time-contrastive autoencoder as described
above. The same parameters for the neural encoder were
use for all exploration strategies. This was done to allow the
sole evaluation of the exploration strategies independently of
the used embedding. Since cheetah is a quite dynamic task
and rewards depend on the forward velocity, this velocity
must be inferable from each state. Hence, we project three
subsequent images (Im;_o,Im;_1,Im;) down by using the
encoder network and define the current state z; as the three
stacked latent states z; = [z;_2,2%¢_1,2¢|’ . For each of the
presented evaluations 25 experiments were executed and the
mean and standard deviations of the episodic cumulative
rewards are shown in Figures 58]

1) Comparison between Ornstein-Uhlenbeck and opti-
mized exploration: As a first step we optimized the hyperpa-

TABLE I: The average success rate of insertion for poli-
cies trained by DDPG with standard Ornstein-Uhlenbeck
exploration or trajectory optimization with varying planning
horizons. The individual success rates for each experiment
were computed over a window of 50 subsequent episodes of
500 executions total. The average success rates and standard
deviations were then computed with the highest success rate
achieved in each experiment. A total of five experiments were
executed for each method.

Method

Ornstein-Uhlenbeck Exploration
1 Step Planning Horizon

3 Steps Planning Horizon

5 Steps Planning Horizon

15 Steps Planning Horizon

| Avg. Success rate (+std)

75.2% (L11.7%)
93.2% (£5.2%)
91.6% (+1.5%)
84.0% (£14.1%)
84.4% (+£9%)

rameter o of DDPG and found that an Ornstein-Uhlenbeck
process with o = 0.5 and 6§ = 0.15 achieve a better result for
DDPG on this task than the variance of ¢ = 0.2 proposed
in [11], especially in the early stages of the training process.
A planning horizon of ten steps was used to generate the
optimized noise. We make comparisons between the training
process, in which we use the exploration strategies, and
the test case, in which we execute the deterministic actions
produced by the actor without noise. Throughout the training
process we evaluate the current policy of the actor after each
episode. The results are presented in Fig. [3

2) Comparison between different planning horizons: The
main hyperparameter for optimized noise is the length of
the planning horizon. If it is too short, actions are optimized
greedily for immediate or apparent short-term success; if it
is too long, the planning error becomes too large. Figure [7]
shows the optimized exploration strategy with three different
step-sizes: one step, ten steps and 20 steps into the future
from the current state.

3) Comparison between different objectives: We intro-
duced two potential objective functions, based on Q-values
(Eq. [TI) and a mix of reward- and Q-function (Eq. [I2Z). We
compare both of these against another objective where we
only optimize for the g-value of the very last state-action
pair of the unrolled trajectory (Fig. [§).

B. Insertion in the real world

Fast exploration is especially important when tasks have
to be solved in a real world environment and training needs
to be executed on the real robot. An insertion task was set
up in which a Baxter robot had to insert a cylinder into
a tube where both training and testing were performed in
the real world environment, without the use of simulation
(Fig. El Cylinder and tube were 3D-printed. The cylinder
was attached to the right end-effector of the robot with a
string. The position control mode was used because there is
a variable delay in the observations. Image observation were
acquired from the end-effector camera of the Baxter robot
via ethernet. The six dimensional actions are in the range

A video of the experiment can be found here: https://youtu.be/
rfZcUWnut5I

https://youtu.be/rfZcUWnut5I
https://youtu.be/rfZcUWnut5I

5- — Latent DDPG
__ Optimization with
Q-function
' ' ' i -
0 20 40 60 80 100
Episodes

(a) Deterministic Policy (Q-Value)

Optimization
Latent DDPG
' | ' ' r
0 20 40 60 80 100
Episodes

(c) Deterministic Policy (Value)

— Latent DDPG
__ Optimization with
Q-function

' ' r
60 80 100

Episodes

(b) Exploration (Q-Value)

Optimization
Latent DDPG
' ') i r
0 20 40 60 80 100
Episodes

(d) Exploration (Value)

Fig. 5: Comparison between DDPG using exploration with optimization (orange) and classical exploration using an Ornstein-
Uhlenbeck process (blue) on the simulated cheetah task. The exploitation graph shows the evaluation of actions produced
by the deterministic actor while exploration strategies are applied during training.

404 ' ' ' ' R

A A /N
30- ; f\/\// \/\ A V/ |

— Optimization
— Latent DDPG

i) ' ' r
0 20 40 60 80 100

Fig. 6: Comparison between DDPG using exploration with
optimization (orange) and classical exploration using an
Ornstein-Uhlenbeck process (blue) on the simulated cheetah
task while using a value function as critic. The number of
training iterations per episode were raised from 1000 (Fig.
|§|-d) to 3000 for this evaluation.

of [—0.05,0.05] radians and represent the deviation for each
joint of the arm at a point in time. This restriction ensures
a strong correlation between subsequent camera images
throughout the execution and allows the task to be solved
in 20 steps. The initial position (radians) of the robot arm
was randomized by sampling from a normal distribution with
mean pu1.¢ = (0.48,—1.23,—-0.15,1.42,0.025,1.35) and
variances o1.¢ = (0.05,0.05,0.05,0.05,0.05,0.1), ensuring
that the tube is in the image. As a simplification of the
task, we excluded the last rotational wrist joint of the robot
arm. Because of the adynamic nature of this task and the

5. — 1step |-

— 10 Steps

20 Steps

i)) ' r

0 20 a0 60 80 100
Episodes

Fig. 7: Exploration through optimization evaluated with
different horizons for the planning trajectory on the simulated
cheetah task.

Reward

-
100

Episodes

Fig. 8: Comparison between three different objective func-
tions for optimized exploration on the simulated cheetah task.

—— Ornstein-Uhlenbeck
—— Trajectory Optimization

Reward

0 100 200 300 400 500
Episodes

(a) Deterministic Policy

—— Ornstein-Uhlenbeck
—— Trajectory Optimization

Reward

0 100 200 300 400 500
Episodes

(b) Exploration

Fig. 9: Comparison between exploration with an Ornstein-
Uhlenbeck (blue) and exploration through optimization (red)
on the insertion task in the real world. The planning horizon
is three steps. The figures show the cumulative rewards
averaged over five experiments in light colours and in bold
colours, for better interpretability due to the sparse reward,
the mean smoothed with a Savitzky-Golay filter with window
size 21 and lst order polynomials.

necessity to use position control mode it is sufficient to use
the latent representation of the current image versus a stack
of images as in simulation. Larger movements of the cylinder
appear as blur in the images. Each episode consists of 20
time steps and a sparse reward is used: For safety reasons,
if the end-effector left the designated workspace area, the
episode ended and a reward of —1 is assigned. When the
cylinder is inserted into the tube, the extent of insertion
is transformed into a reward from [0,1.0] and an episode
stops if a reward of 0.9 or higher is assigned. The state of
insertion is measured with a laser-based time-of-flight sensor
(VL6180). The reward for all other possible states is zero.
Five experiments were conducted on the robot: DDPG with a
value function as critic and Ornstein-Uhlenbeck exploration,
DDPG with exploration using trajectory optimization and a
varying planning horizon (1, 3, 5 and 15 steps). We use
a reduced planning horizon in this task due to the low
number of time steps per episode. The comparison between
Ornstein-Uhlenbeck exploration and optimized exploration
with a horizon of three is shown in Fig. 0] Every episode
which ends with a negative cumulative reward violated the
workspace boundaries and episodes reaching a reward of
0.9 or more were successful insertions. Table [I| shows the
comparison between exploration with Ornstein-Uhlenbeck
noise and using planning horizons of different lengths in

terms of successful insertions. Each experiment was repeated
five times and the cumulative reward for each episode is
used to compute the mean shown in Figure [0 For better
interpretability, the figures show, in bold lines, additionally a
smoothed version of the mean where a Savitzky-Golay filter
was applied with a window size of 21 and polynomials of
order one. The autoencoder network as well as the dynamics
network were trained with a demonstration dataset of 50 tra-
jectories. Of these, 19 were positive demonstrations, in which
the cylinder was successfully inserted. At the beginning of
each training process, 5 of these 19 trajectories were added
to the replay buffer to ensure convergence of the training
process due to the difficulty of the task caused by using
sparse reward.

V. DISCUSSION

We start with a discussion of the results from the simulated
bipedal cheetah task which uses a dense reward function:
The first insight is that both actors seem to perform equally
well after 20 episodes, with the actor trained with optimized
noise outperforming classical DDPG throughout the first 20
episodes (Fig. [3] (a)). However, during training the optimized
exploration does not only perform better than exploration
with an Ornstein-Uhlenbeck process (Fig. E] (b)) but also
performs better than the actions produced by both actors
during test time (Fig. 3] (a)).

We found that using a critic network modelling the Q-
function (Fig. [5] (b)) outperformed the formulation of DDPG
using a value network when using optimized exploration
(Fig. B] (d)), while DDPG with Ornstein-Uhlenbeck noise
performs slightly better with a Value network (Fig. E] (a,d)).
One could argue, that the effects of using optimized noise
could vanish when increasing the number of trainings per
episode, giving DDPG more time to find an optimal actor
given the current training set. Following this line of thought
we increased the number of training iterations per episode
three times to 3000 (Fig. [6). The evaluation shows that
while DDPG with OU noise improves in the later stages
of the learning process, the trajectory optimization uncovers
valuable training experience now much faster early on. This
strongly indicates that the data distribution generated by
the exploration strategy has an impact on the performance
of DDPG. Evaluating the step-lengths we could find that
trajectory optimization improved up to a planning horizon
of 20 steps, although we opted for our experiments with
a conservative planning horizon of 10 steps to reduce the
overall training time. The evaluation of the three introduced
objective functions show that the summation of Q-values
along the planning trajectory yields better performance in
the early training stages, up to episode 25, for the dense
reward task (Fig. B). This is an interesting result given
that many other trajectory optimization approaches use a
Bellman-inspired sum of weighted rewards [15], [2]. It is
also worth to notice that the Q-Value is the more suitable
objective function for optimizing actions in the presented
real-world insertion task due to the reward function being
zero for the majority of time steps.

The results showing the learning progress on the insertion
task in the real world draw a clearer picture of the benefit of
exploration through optimization (Fig.[9] Table[[). Generally,
after roughly 50 training episodes, the networks trained with
optimized exploration outperformed DDPG with OU and
also achieved higher rewards in later stages of the learning
process (Fig.[09). An evaluation of the length of the planning
horizon shows, as expected, that longer planning horizons
lead to a decreases performance (Table[l). This is very likely
due to the accumulating error of predicted future states from
the dynamics network. However, even with longer planning
horizons the presented approach outperformed exploration
using OU noise.

VI. CONCLUSION

This work investigated the possibility of combining an
actor-critic reinforcement learning method with a model-
based trajectory optimization method for exploration. By
using trajectory optimization only to gain new experience,
the ability of DDPG to learn an optimal policy is not affected
and we can furthermore make use of DDPG’s off-policy
training ability. We were able to show that by using this
strategy, a performance gain can be achieved, especially in
the presented real world insertion task learned from images.
It is worth noting that this performance gain can be mainly
attributed to the change in exploration strategy since a
fixed image embedding was used, reducing the possibility
of performance differences caused by using different image
embeddings. This work only considered using reward, Q-
Value or value functions as objective functions for optimizing
the latent trajectory. In future work we plan to investigate the
possibility of using additional cost terms, eg. safety and state-
novelty. Furthermore, another natural next step would be to
use probabilistic dynamics networks and advanced trajectory
optimization algorithms to evaluate their impact on deep
reinforcement learning algorithms when used for exploration
in this setup.

REFERENCES

[1] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin,
Jan Issac, Nathan Ratliff, and Dieter Fox. Closing the sim-to-real loop:
Adapting simulation randomization with real world experience. arXiv
preprint arXiv:1810.05687, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey
Levine. Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pages 4759-4770, 2018.

Adria Colome, Fabio Amadio, and Carme Torras. Exploiting sym-
metries in reinforcement learning of bimanual robotic tasks. IEEE
Robotics and Automation Letters, 2019.

[4] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Conference on
Machine Learning, pages 1856-1865, 2018.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap,
Tom Erez, and Yuval Tassa. Learning continuous control policies
by stochastic value gradients. In Advances in Neural Information
Processing Systems, pages 2944-2952, 2015.

Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne
Perot, and Fawzi Nashashibi. End-to-end race driving with deep
reinforcement learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2070-2075. IEEE, 2018.

[2

—

[3

=

[5

=

[6

—

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele
Reda, John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar
Shah. Learning to drive in a day. arXiv preprint arXiv:1807.00412,
2018.

Jens Kober and Jan R Peters. Policy search for motor primitives in
robotics. In Advances in neural information processing systems, pages
849-856, 2009.

Fengming Li, Qi Jiang, Sisi Zhang, Meng Wei, and Rui Song.
Robot skill acquisition in assembly process using deep reinforcement
learning. Neurocomputing, 2019.

Tianyu Li, Akshara Rai, Hartmut Geyer, and Christopher G Atkeson.
Using deep reinforcement learning to learn high-level policies on the
atrias biped. arXiv preprint arXiv:1809.10811, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Kevin Sebastian Luck and Heni Ben Amor. Extracting bimanual syn-
ergies with reinforcement learning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4805—
4812. IEEE, 2017.

Kevin Sebastian Luck, Joseph Campbell, Michael Andrew Jansen,
Daniel M. Aukes, and Heni Ben Amor. From the lab to the desert: Fast
prototyping and learning of robot locomotion. In Robotics: Science
and Systems, 2017.

Kevin Sebastian Luck, Gerhard Neumann, Erik Berger, Jan Peters,
and Heni Ben Amor. Latent space policy search for robotics. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1434-1440. IEEE, 2014.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey
Levine. Neural network dynamics for model-based deep reinforcement
learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7559-7566.
IEEE, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 16-17, 2017.

Gautam Reddy, Jerome Wong-Ng, Antonio Celani, Terrence J Se-
jnowski, and Massimo Vergassola. Glider soaring via reinforcement
learning in the field. Nature, 562(7726):236, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 20117.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric
Jang, Stefan Schaal, Sergey Levine, and Google Brain. Time-
contrastive networks: Self-supervised learning from video. In 2018
IEEE International Conference on Robotics and Automation (ICRA),
pages 1134-1141. IEEE, 2018.

A Srinivas, A Jabri, P Abbeel, S Levine, and C Finn. Universal
planning networks. In International Conference on Machine Learning
(ICML), 2018.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing
exploration in reinforcement learning with deep predictive models.
arXiv preprint arXiv:1507.00814, 2015.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAl Xi
Chen, Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. #
exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in neural information processing systems, pages
2753-2762, 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li,
Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel,
Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Russ Tedrake, Zack Jackowski, Rick Cory, John William Roberts, and
Warren Hoburg. Learning to fly like a bird. In /4th International
Symposium on Robotics Research. Lucerne, Switzerland. Citeseer,
2009.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the
brownian motion. Physical review, 36(5):823, 1930.

Matej Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothorl, Thomas Lampe,
and Martin Riedmiller. Leveraging demonstrations for deep rein-
forcement learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

[27] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal.
Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathematical Soft-
ware (TOMS), 23(4):550-560, 1997.

	I Introduction
	II Related Work
	III Method
	III-A Image Embedding
	III-B Latent Dynamics
	III-C Deep Reinforcement Learning
	III-D Optimized Exploration

	IV Experiments
	IV-A Evaluation in Simulation on the Cheetah Task
	IV-A.1 Comparison between Ornstein-Uhlenbeck and optimized exploration
	IV-A.2 Comparison between different planning horizons
	IV-A.3 Comparison between different objectives

	IV-B Insertion in the real world

	V Discussion
	VI Conclusion
	References

